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| e-mobility

Aims (Northumbria Contribution)

« Study the impact of Smart Grid solutions, such as V2G, and
demand management.

 Model EV battery behaviour and test EV batteries to quantify the
implications of using the EV battery for Grid support including
smoothing demand, meeting grid regulations and optimise the use
of renewable energy.

* Quantify the economic and engineering implications of V2G which
would make the acquisition of an EV a more attractive investment
for the owner, the manufacturer and the grid operator.

« Define requirements to allow for economic V2G and develop a
business case.
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System modelling, analysis and development

Impact of EV charging and generation from
renewables on the grid.

Controlled EV charging (G2V) to support the grid.
Implementation of V2G for existing and future power
distribution networks (Smart Grids).

Use of second life EV batteries for storage and grid
support (BESS).

Grid-code, network specifications and requirements
relevant to V2G. Battery requirements based on smart
grid use.

A computer model of a typical low voltage (LV)
network, including EVs, RES, BESS in the presence
of low carbon technologies (e.g. heat pumps) has
been developed.

A laboratory experimental model of a smart battery
charger is under development.
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Progress so far e-mobility

System modelling and analysis

A computer model is used to simulate a typical LV network and show how the
power flow and voltage vary though a 24 hour period with and without EVs,
renewable energy sources, battery energy storage systems, etc.

The model allows evaluation of the impacts of EV charging posts and analysis of
smart grids solutions, G2V, V2G, smart charging and the impact of battery cycling
on the battery state of health.
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The modelling tool was developed as part of a project funded by Charge Your Car North (Electric Vehicle Infrastructure — Smart Grids and EV Infrastructure Regional Impact).
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Transformer loading pu
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Transformer loading pu
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Transformer loading pu
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Transformer loading with 2050 .
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Progress so far | e-mobility

Battery testing — e
-

« Dedicated equipment to analyse the state of health (SOH) of =
rechargeable batteries. Up to 16 cells can be simultaneously
cycled (charge/discharge) in a controlled way (independently) and
controlled environment (temperature and humidity).

« Analyse battery degradation and define factors affecting the
ageing process

* Model battery degradation and develop a battery aging model

Collaboration with Ghent University

« Data from actual EV driving trials collected by Ghent University is
being analysed to validate lab results and develop battery SOH
model

Publications

« 3 conferences, 3 invited talks, 2 journal papers
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e-mobility
Collaboration with Ghent University

« Experimental data collected by Ghent University from actual EV driving
trials.

« Initial work is conducted to establish the degree of degradation in battery
SOH.

 Itis necessary to know the energy input to the battery (during charging) to
obtain a given increase in battery state of charge; the energy input will
decrease as the battery SOH falls. Therefore, the variation in SOH can be
derived.

« With appropriate data, a correlation between the degradation in SOH and
charge/discharge cycles may be defined.

« The results of data analysis will then be compared lab testing results and
with those predicted by existing theoretical and simulation work, and
adjustment made to the parameters in the latter so that the model
developed reflects reality.
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Battery SOC from driving
data
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Battery |, V from driving -[U e-mobility
data
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Driving time during 2"?
discharge cycle
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SOC % X10

Battery power for 2nd
discharge cycle
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Total net energy supplied by battery = [V*| dt
Using trapezoidal numerical integration gives total energy supplied by the battery during the
2nd discharge cycle = 4.0364e+007 Ws = 1.1212e+004 Wh = 11.212 kWh
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e-mobility

The 2" discharge cycle lasted for 95 minutes, during which the battery
has provided 11.212 kWh.

A Nissan Leaf was used for the trial, which has a battery capacity of
24 kWh at 100% SOH. If battery initial SOC = 91.5% (0.915), such a
power drawdown would correspond to a change in SOC of

11.212 / (24 x 0.915) = 51.06% with a battery having 100% SOH.

The measured change in SOC for the discharge cycle was:
(0.915-0.407)/ 0.915 = 56%

Therefore SOH for this battery during the 2"d cycle was:
(51.06 / 56) x 100 = 91.16%
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| e-mobility

Samples of Li lon cells and packs are being tested

Cycling has been programmed to investigate the factors that
determine the battery state of health (SOH):

Cell temperature
Charge/Discharge rate

Average state of charge (SOC)
Depth of Discharge (DOD)

Number of charge/discharge cycles

Data measured at 1 minute intervals and stored in excel files
for analysis

northumbria
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| e-mobility

» Keep battery temp between 20 and 35°C
« Ensure BMS keeps cells temperature within range
« Avoid fast charging/discharging, especially when ambient temp is
high
» Keep average SOC low

« Minimise charging as much as practically possible. Charge before
next use (smart charging).

* V2G can be used to minimise SOC!
» Keep DOD low
» Allow low charge/discharge several times rather than full
recharging/discharging
» Keep charging rate low
« Charge at the lowest convenient current rate whenever possible

i
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=U e-mobility

Invited talks
1. “Integration of Low Carbon Technologies in Power Networks Impacts, Challenges and Opportunities” EFEA
2012 June 2012, Newcastle upon Tyne, UK.
2. “Smart Grids: Energising Future Power Networks”, keynote speech, ICEEP Il conference, October 2013,
Hebron, Palestine.
3. “Smart Charging of Electric Vehicles”, EPSRC Workshop on Smart Management of Electric Vehicles, Cardiff
University, March 2014.

Journal papers
1. “Smart Grids: Energising the Future”, International Journal of Environmental Studies, Vol. 70, No. 5, October
2013, pp 691-701.
2. “Development of a Decentralized Smart Charge Controller for Electric Vehicles”, accepted for publication in
the Elsevier International Journal of Electrical Power & Energy Systems, April 2014.

Conference papers
1. “Modelling the Use of Second Life Electric Vehicle Batteries for Storage and Grid Support”, IEEE
EUROCON2013, (Zagreb), July 2013.
2. “The Effect of Cycling on the State of Health of the Electric Vehicle Battery”, UPEC2013 Conference
Proceeding, Dublin, Ireland, Sept. 2013.
3. “A Modelling Tool to Investigate the Effect of Electric Vehicle Charging on Low Voltage Networks”, EVS27
conference Barcelona, Spain, November 17-20, 2013.

Prepared for publication
1. “Energy Efficiency in Electric and Plug-in Hybrid Electric Vehicles and its Impact on Total Cost of Ownership”,
accepted in “E-Mobility Business Models” published by IEA IA-HEV, April 2014.
2. “The implications for the degradation of Electric Vehicle batteries of Smart Grid behaviour”, prepared for
publication.
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Battery Testing

e-mobility
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Permanent loss in Capacity (kWh) or
performance (kW)

|

* Due to a change in chemical and physical construction of
the battery, which results in an increased internal
resistance in the battery and/or a reduced upper and
lower voltage.

» The chemical changes affect the ohmic, charge transfer
or diffusion resistance.

» The physical changes affect how much ion transfer, and
thus capacity is possible before the battery reaches its
maximum SOC.

» The behaviour of a particular EV user will change these
parameters, and so the battery in the EV will age at a
different rate to others

Hysteresis curves for cells of different
ages
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e-mobility

State of Charge
Higher average SOC degrades batteries faster than a low average.

Temperature
Higher temperatures degrade batteries faster than lower temperatures

Current
Faster charging current rates degrade batteries faster than slower rates

Depth of Discharge
The deeper the DOD, the faster the battery will degrade

Number of Cycles

Charging and discharging a battery causes it to age faster than time
alone

i
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Battery Temperature

« EV batteries are designed to
operate at an ambient temperature
between -10°C and 40°C

» The literature shows ageing as
temperature increases, which has
been reflected in the model

 Testing is underway to cycle
batteries at different temperatures
from 0°C to 40°C. Test results will
allow the model to reflect the

battery’s behaviour more precisely .

e
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Average State of Charge

Test results verify the literature, that
low average SOC reduces capacity
loss and thus increases battery life

e-mobility

This can be achieved by
delaying charging until required
for next use
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Charge / Discharge Rate e-mobility

Tests at different charge rate Cycling tests are currently
show some variation but the underway, mimicking 3 kW, 7 kW
trend is clear 23 kW and 50 kW charging
% ca pacitv loss per CVCIE kW equivalent charging rate | % capacity loss / cycle
0.400 3 0.013
0.350 ¢ 7 0.028
0.300 /’

23 0.3200
4

These cells are not designed to run at 1C

0-200 so results for 23kW is not typical.
0.150 ry—
0.100 *
0.050 Change in internal resistance | Change in capacity
(over 100 cycles) (over 100 cycles)
0.000 ' ‘ | ' ! 1C cycling 45% 1.4%
0 1 2 3 4 2 2 C cycling 4.4% 2.6%

current (A)

Different cells with 2C capability show

increased ageing with rapid charging
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Depth of Discharge or - N
Change in SOC JU e-mobility

Qapamty decreases with depth of Results appear to show that the effect
discharge of DOD or ASOC on capacity loss is not
R ====——=—c=——=—c—————c—— statistically significant
'_.’; 10,000 0.2
0 |
:? 0.15
§°°° '
o LT NENENEEEE | |I‘.|II‘|I
] 10 20 30 40 S0 60 70 80 90 100 0.3 D.I 0.5 0.6 0.7 0.8 0.8 0.9 1
Depth of Discharge (% of 20 Hour Capacity) " pop I

The graph was constructed for a Lead acid battery, but with 01

different scaling factors, it is typical for all cell chemistries
including Lithium-ion. This is because battery life depends

on the total energy throughput that the active chemicals It is unclear whether DOD is the same as change in
can tolerate. Ignoring other ageing effects, the total energy SOC as published results always use 100% SOC as
throughput is fixed so that one cycle of 100% DOD is the max value

roughly equivalent to 2 cycles at 50% DOD and 10 cycles at
10% DOD and 100 cycles at 1% DOD.
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Scenarios Considered in e-mobility
Lab testing (realistic values)

» Four cells are stored to provide data for calendar ageing at two
different SOCs and temperatures.

» Cells are charged at C-rate to match existing charge points,
controlling SOC and discharge rate.

Three cells charging at C/8 (slow), C/3 (medium ) and 1C (fast)
Two cells cycling at 1C (fast) rate and 2C (rapid) rate

» Four cells are cycled with two different charge rates
Charging immediately after driving,
Immediately before driving,

ean Regional Development Fund -
northumbria
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Scenarios Considered in e-mobility
Lab testing (range of values)

» Three cells are cycled at different currents, maintaining that
value for constant C/D rate

» Cells are cycled at different DOD, each with a constant ASOC

» Two cells are cycled at different temperatures
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Summary of Results | e-mobility

Obtained so far

* Internal resistance of the cell appears to increase with cycle
number, which agrees with published results
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Summary of Results
Obtained so far

e-mobility NSR

» Charging capacity decreases with cycle number at fast charging

rate
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capacity

Temperature effects

Capacity is affected most
strongly by temperature

Ongoing results will allow us to screen
out this factor. Existing comparative
results are undertaken at the same time
and place, to eliminate this bias
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e-mobility NSR

Internal resistance decreases
with temperature, masking the
ageing effects.

Since this factor appears to be linear, a
correction factor can be placed in the
results.
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Further Analysis -
Temperature

e-mobility

» Temperature of cells rises during charging and decreases at the
start of discharge before leveling off and rising
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Method for establishing T
=)U e-mobilit
SOH for battery I Y

SOC

If a battery, of original capacity y kWh, has aged so its SOH is 4,
then its actual capacity (100% SOC) is Ay.

Thus a fixed loss in energy (x) will result in a larger loss in SOC as 4

decreases.
Ay — x

SOCapeq = .100%
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Method for establishing e-mobility
SOH for battery

If a battery loses x kWh of charge, where the rated capacity is ykWh, then
y—X

However, the SOC is measured from the actual battery data and thus the aged SOC
( 50C,,.q) is the displayed value.

Thus, for any value of capacity SOH = Wﬂ"gg’i. 100%
S0Cagea
And SOH = —=%-.100%
y

For example, a 16kWh nominal capacity battery loses 8kWh of energy. The display
reads 40% SOC remaining.
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SOH = =80%

And the battery is at the end of its useful life.




| e-mobility

Charging of EVs can cause problems for power networks if not appropriately
controlled.

Smart charging not only reduces the impact of EVs on the grid but also provide
opportunities to use the EV to support to the grid via G2V. With appropriate
smart controllers and V2G, EVs can provide ancillary services such as
supply/demand matching and voltage/frequency control.

Use of second life EV batteries can provide a valuable support for the grid and
therefore reduce the EV total cost of ownership.

More work is needed to verify interim results regarding battery degradation and
SOH. More cycling whilst controlling temperature will help to verify understanding
of ageing mechanismes.

Analysis of data provided by Ghent University and experimental results will allow
the battery ageing model to be verified.

Defining the battery degradation factors will enable optimum
charging/discharging control strategies to prevent or minimize the damage to the
battery whilst providing V2G service.
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| e-mobility

The ultimate aim is to establish a charging regime for EV
batteries which will permit economical V2G and smart
charging suitable for smart grids:

1. Use temperature chamber for more testing to analyse the effect
of battery temperature

2. Develop model for battery degradation and check against lab
results and data from real EV trials from Ghent University

3. Using the model, establish conditions for minimizing battery
degradation and verify in the lab

4. Use economic models to establish a business case for V2G
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