

Practical issues with implementing smart charging

Dr Steve McDonald

CTO Emerging Technologies

Introduction

- A quick introduction to Narec, Charge Your Car and Enevate
- Why do we need to consider smart charging techniques?
- Electric Vehicle charging technology:
 - Where we are now in the UK
 - Where we need to be for effective Smart Grids integration
- Case study: The North East's Plugged in Places project

Introduction

- A quick introduction to Narec, Charge Your Car and Enevate
- Why do we need to consider smart charging techniques?
- Electric Vehicle charging technology:
 - Where we are now in the UK
 - Where we need to be for effective Smart Grids integration
- Case study: The North East's Plugged in Places project

What is Narec?

- Narec is an independent, cross-disciplined R&D platform
- Mission: Enable energy industry to advance technology in order to reach sustainability
- How: By supporting the design, deployment, testing and commercialisation of sustainable energy technologies

North East England: Plugged in Places

- The project to install electric vehicle charging points across North East England
- = Part of a national programme funded by the Office for Low Emissions Vehicles
- With the aim of creating a comprehensive charging infrastructure within 3 years (until March 2013)
- North East England now has almost 400 charging points installed made up of a mix of quick, standard and home charging points more than any other region in the UK
- The project also sets out to advance common standards in charging infrastructure
- And help research and understand EV driver behaviour
- The project also operates <u>www.chargeyourcar.org.uk</u> giving access to the charging points to members

ENEVATE European Network of Electric Vehicles and Transferring Expertise

Electric Vehicle Technology

- Supply chain analysis
- Instruments to develop strong supply chain

Sustainable Energy Supply Infrastructure

- Knowledge building
- Transnational consultation and research
- Tool kit development and evaluation

Market Drivers and E-Mobility Concepts

- Define integrated sustainable E-Mobility concepts
- Market analysis of user acceptance
- Scenario building
- Developing support instruments

Pilots

- Analysis of EV Pilots in NWE
- Implementation of ENEVATE findings in regional pilots
- Finalising guidelines and lessons learned

Enabling / Innovation Accelerator

- Creation of E-Mobility road map and policy recommendations
- Stimulation and active coaching of EV supply chain
- Facilitate acceleration of E-Mobility innovation
- Implementation of training programs

Accelerating E-Mobility

Introduction

- A quick introduction to Narec, Charge Your Car and Enevate
- Why do we need to consider smart charging techniques?
- Electric Vehicle charging technology:
 - Where we are now in the UK
 - Where we need to be for effective Smart Grids integration
- Case study: The North East's Plugged in Places project

The challenge is to meet the UK GHG targets:

Source: UK National Atmospheric Emissions Inventory (2008).

Mobility and the home - today

Electricity generation – future

- Alpha scenario largely balanced effort from:
 - Conventional thermal with CCS
 - Nuclear
 - Renewables
- Doubling of demand

Source – DECC – pathways analysis report

Mobility and the home - future

So where do people usually charge their cars?

Most charge at home

Most charge daily

Source - Survey of vehicle users in the NE PIP area

Introduction

- A quick introduction to Narec, Charge Your Car and Enevate
- Why do we need to consider smart charging techniques?
- Electric Vehicle charging technology:
 - Where we are now in the UK
 - Where we need to be for effective Smart Grids integration
- Case study: The North East's Plugged in Places project

Vehicle charging

- Two main classes:
 - Publicly accessible,
 multi user charging:
 - Workplaces
 - Car parks
 - Streets
 - Private user
 charging charging damestic charging
 "domestic charging"
 "domestic charging"
 - Private car parks

Vehicle to charge post communications

• UK position:

 Current EV charging infrastructure has no smart grid functionality enabled.

Mode 1 (2), "traditional" 3-pin plug

- Some basic issues; yet to get agreed standard on plug for mode 3 capability (first step)
- Domestic smart-meters in trials are not yet EV enabled

Mode 3, type 2, "Mennekes" plug

Charge point communications

Public charge point

- In general GSM to the "back office"
- In poor signal areas IP can be used over a LAN.
- Presently, metering is carried out as a separate function
 - In the North East it is separate from the charge point, even though the charge point has a meter in it!

Domestic charge point

- No communications installed at present
- Some trials of smart meters but functionality limited to:
 - Maximum power curtailment
 - User informatics
 - Feedback to utility
 - Some single load switching which could be used to prevent peak time operation of EV charge point

Domestic charging challenges - short term

- Low levels of EV penetration:
 - Local connection reinforcement
 - Metering
 - Standards
 - Safetyus areas
 - Education

Damage to BS1363 plug due to use in EV charging Source: ESB

Focussing on issues with domestic vehicle charging?

- Location and type of load is unique
 - Long duration of operation
 - Outdoor connections
 - Relatively high power
 - Plug in time will typically coincide with evening peak demand

Domestic challenges - medium term

Increased levels of EV penetration:

- Localised impact of large numbers of domestic chargers
- Combined impact of EV chargers with embedded generation
- Smart meter/grid integration
- Provision for customers without off-street facilities
 - Dedicated posts?
 - Inductive pads?

Source: Impact of Electric Vehicles on Power Distribution Networks G.A. Putrus et al.

What's needed

- Communications between charge point, smart meter and energy provision services
- Vehicle centric control of charge process
 - Price signals (especially for V to G)
 - Local constraints
 - Consideration of local generation/loads
 - Car must be ready to roll when needed
 - Asynchronous charging to avoid peaks

Local Information Paths

Local Information Paths Some, but not all vehicles, have Back office provider, EV GSM comms on board for updating satnav etc Knowledge boundaries / Could be used to pass battery status and user requirements information to Energy co? DNO/ G\$M Energy co GSIVI, PLC, ADSL etc PLC/RS485 PLC Charge Point Smart meter Car nare Accelerating E-Mobility

Local Information Paths

Introduction

- A quick introduction to Narec, Charge Your Car and Enevate
- Why do we need to consider smart charging techniques?
- Electric Vehicle charging technology:
 - Where we are now in the UK
 - Where we need to be for effective Smart Grids integration
- Case study: The North East's Plugged in Places project

A look at what we are doing in the NE PIP project

- Charging points
 - Standard public posts
 - Domestic charge points
 - Quick chargers
- Back office
 - Managing users initially
 - Future developments
- Smart networks integration
- Induction charging evaluation

Modern electric vehicles have progressed A little!

Actions

- investigate the integration of EV charging with smart-meters:
 - Working with CE –Electric,
 G4S and Podpoint.
 - Power usage monitoring
 - Communications
 - User behaviour
 - Integrated system approach

"THE UK'S BIGGEST SMART GRID PROJECT LANDS IN THE NORTH OF ENGLAND"

Charge point functions

- Collect data on the usage behaviour of EV owners.
 This will include some network specific information such as line voltages, harmonics etc
- Assess user response to economic tariff incentives
- Assess user response to restricted hours tariffs
- Investigate direct control scenarios for example, reducing EV demand if the network is congested

EV users appear to be receptive:

- Users will generally accept having their charging controlled externally if:
 - They can override it if necessary
 - Will benefit financially
 - Car is ready when needed.

Source - Survey of vehicle users in the NE PIP area

Smart EV charging trials

key messages

- Private and public charging require different Smart Grid approaches.
- Private (domestic) more likely to interface with smart meters directly
- Public is developing a life of its own, future remains unclear, back offices are a key issue.
- Grid balancing solutions must not be overlooked in both, but domestic is the primary target..
- We are working to resolve some of the challenges

