Smart Charging Strategies for Electric Vehicles

E-mobility NSR Seminar 30th March 2012

Tianxiang Jiang (PhD candidate, MIET)

Power and Wind Energy Research (PaWER) group School of Computing, Engineering and Information Sciences

Ghanim Putrus (CEIS)

David Gao (CEIS)

Matteo Conti (School of Design)

Northumbria University, UK

Corresponding E-mail: tianxiang.jiang@northumbria.ac.uk



Agenda

- 1. Introduction
- 2. Current EV Charging Issues
 ➢ From customers point of view
 - From power network point of view
- 3. Requirement for Smart Charging
- 4. Smart Charging Controller Design
 - Basic Structure
 - Simulation Results

School of Computing, Engineering and Information Sciences

New and Renewable Energy at CEIS

6 kW QR5 VWT

40 kW PV System, Northumberland Building

1.5 kW HWT and 1 kW PV system

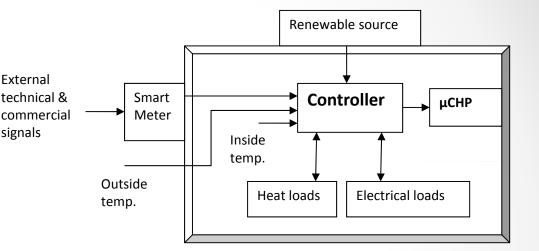
Up to 300A 10V battery test unit

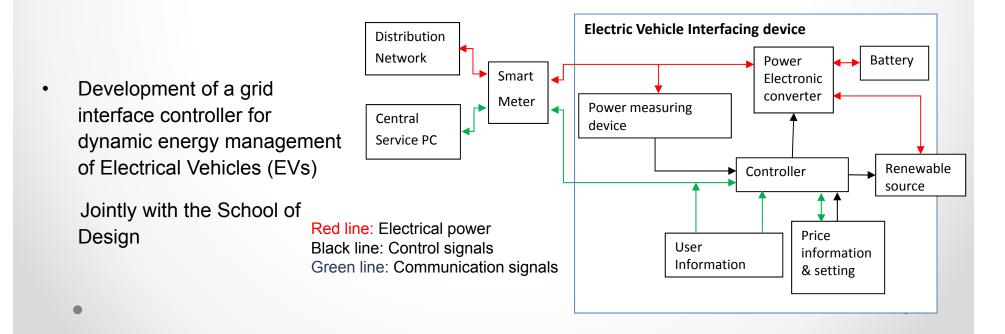
Plans for further development in Pandon Building in 2012 (cost £115,000)

Recent Projects

- e-mobility NSR project: Smart grid solutions
- Electric Vehicle Infrastructure Smart Grids and EV Infrastructure Regional Impact: Development of a Modelling Tool to Evaluate Likely Impact of Electric Vehicles on the Electrical Supply Infrastructure.
 - o Jointly with the School of Built and Natural Environment.
 - Funded by: Zero Carbon Futures (ONE)

source Zline	٦_	$\overline{\mathbf{N}}$							Season
	יאדי	とう	1	1	- I	1	1	- I	winter
	_ ⊾	. 4	► ▼	▼	▼	▼	▼	▼	
Electrical Loads		Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	
No. of hous	eholds	2	327	48	48	27	18	18	Node 1: Undetailed feeder
No. of heat	pumps		0	0	0	0	0	0	Red: Value outside sensib
No. of dome	estic EVs -	3 kW	1	0	0	0	0	0	limits
No. of dome	estic EVs -	7 kW	1	0	0	0	0	0	Consider reducing
No. of public	c EV points	- 23 kW	0	0	0	0	0	0	
Non-domes	tic load - ty	pe	None	None	None	None	None	None	Loads distributed
Non-domes	tic load - nu	Imber							
Public EV p	oint - 50 kV	N	no					P	ower factor 0.95
EV charging mode	delayed			on arrival:	Users swit	tch on charg	gers on arri	val home (6	6:00 pm)
Start charging: 3 kW	23:00	Phased	yes	delayed:	Chargers :	switch on at	set time(s)	
Start charging: 7 kW	22:00	(7 kW)		phased:	Chargers :	switch on in	groups, at	four hour i	ntervals after 7:00 pm
	Initia	I charge %	30		(7 kW only	/-3 kW ren			
On-Site Generation						11 kV Dist	ribution N	etwork Ne	twork Type Urban
Generation installed	yes	PV		kW (av) pe	r house				
Target year/level	other	CHP	0						
		Wind	0			Transforme	er kVA	750	
						Nominal vo	ltage (V)	240	(tap = 0 %)
						Transforme	er tap	-2.5	% (on primary side)
	uts					Detailed f	eeder	Туре	Length (km)
User Inp									·
User Inp						Cable			0
User Inp	410			1		Cable	Line 2		0 mm2 0.1
User Inp	ato	SHOW R	<u>ESULTS</u>			Cable	Line 3	AL Consa	ic 240 mm2 0.1
User Inp	ate	SHOW R	<u>ESULTS</u>]		Cable	Line 3 Line 4	AL Consa AL Wavefo	uc 240 mm2 0.1 rm 185 mm2 0.1
User Inp	ulo	SHOW R	<u>ESULTS</u>]		Cable	Line 3 Line 4 Line 5	AL Consa AL Wavefo	0.1 0.1 0.1 0.1 0.1 0.1 0.1
User Inp	uto	<u>SHOW R</u>]		Cable	Line 3 Line 4	AL Consa AL Wavefo AL Wavefo AL Consa	uc 240 mm2 0.1 rm 185 mm2 0.1




Development of Smart controllers for Dynamic Energy Management

Partly funded by Narec

 Development of a smart controller for Small-Scale Combined Heat and Power (CHP) system

Jointly with the School of Built and Natural Environment

School of Design

CASE STUDY ONE : HVLC PILOT PROJECT

To envisage functional and experiential value made possible by the commercial development of electric vehicle platforms & new technologies.

CASE STUDY TWO : AVID CUE-V EXTERIOR DESIGN

The aim was to find an appropriate aesthetic for a car to be converted into an electric powertrain. As a result the vehicle exterior was redesigned to produce new bodywork in clay for future production purposes.

CASE STUDY THREE : ZET - ELECTRIC MOTORHOME

To develop concept ideas for future hybrid/electric motor homes in terms of creating improved interior layouts, flexible cabin designs and distinctive exterior forms reflecting the next generation of motorhomes.

Barrier to EV Uptake

Current

Barriers	Overall ranking
High purchase cost	Very high significance
Limited range of EVs (and range anxiety issues)	Very high significance
Lack of recharging infrastructure (and issues relating to implementation and operation of infrastructure)	Very high significance
Uncertainty about future resale value	High significance
Limited performance and limited choice of vehicles	High significance
Weak image association	High significance
Uncertainty about future energy costs	High significance
Limited environmental benefits associated with current models	Moderate significance

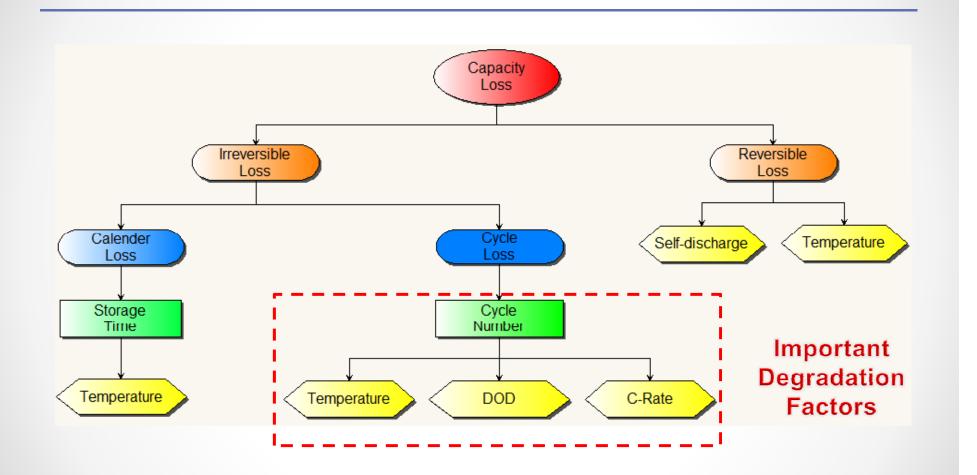
Atkins Ltd's report for WWF Scotland; Electric Vehicles: Driving the change

For the power network

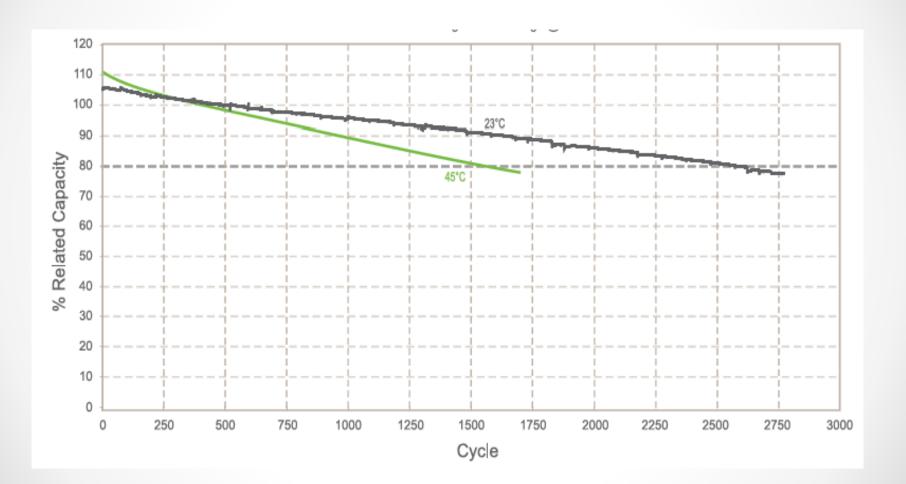
Barriers	Overall ranking
Heavy loading on power network due to uncontrolled charging	High significance
Charging from power plants fired by fossil fuel (not renewable)	High significance
	4/2/2012 - 8

Aim

- Batteries that have low cost, high energy/power capacity and long working life. Current commercial battery technology can not meet these requirements.
- Network security and utilization of renewable generation

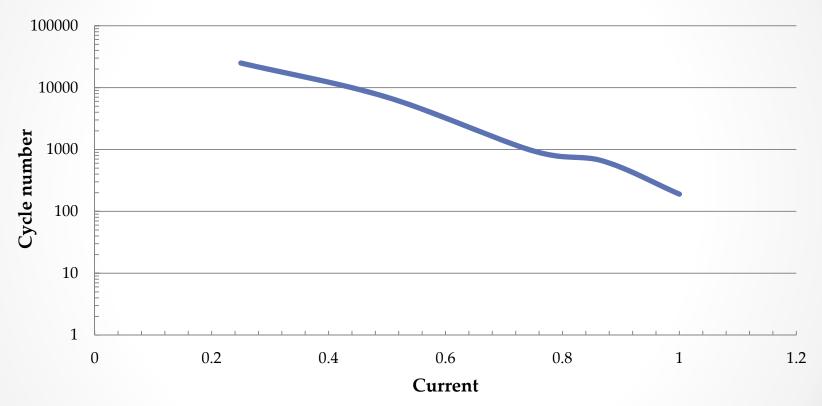

So this project aims to develop a smart charger which can

- Extend EV battery life span
- Solve range anxiety issue
- Meet user needs and allow the user to have a proactive role.
- User-friendly and more interaction with the user
- Reduce maintenance cost
- Improve the reliability of grid
- Maximize use of renewable energy


great learning great experience great future

Battery Aging – From Customers Side

Temperature


Depth Of Discharge (DOD)

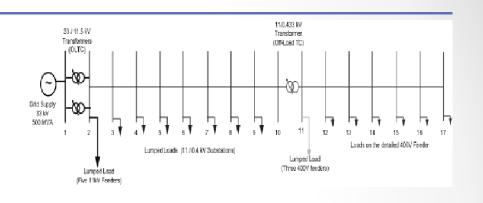
Ref:LIFEMIT

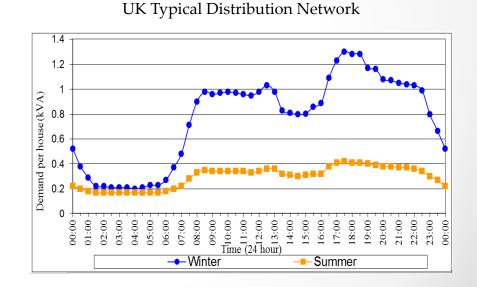
C-Rate

nC means the current in amps equals n times the capacity in ampere-hours

(LiCoO₂/ Li_{4/3}Ti_{5/3}O₄) battery

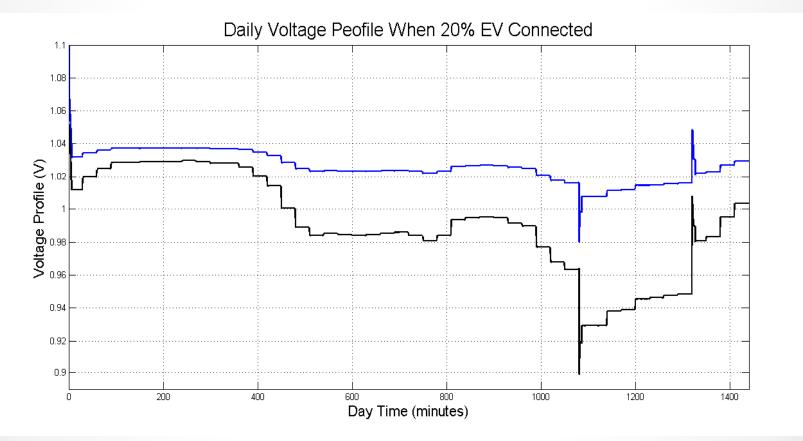
Ref : Development of long life lithium ion battery for power storage


Issues to Consider


- Battery ageing accelerate when charging at:
 - High temperature
 - High current rate
 - ➢ High DOD

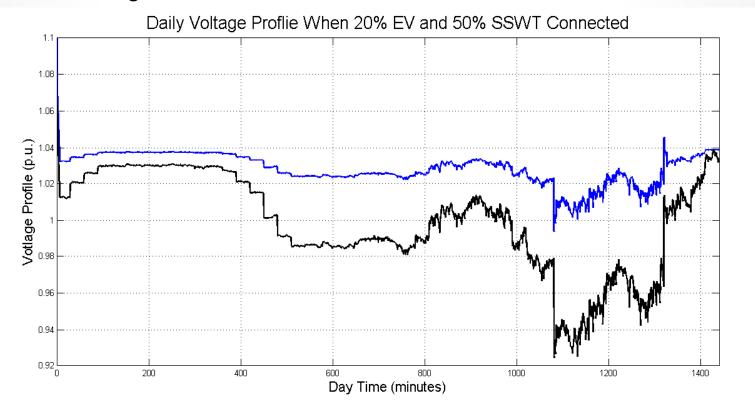
Network Security and Stability – From grid side

- 1. Voltage is one of the important reference for network security. For LV distribution networks (230/400 V): $0.94 \le \text{V} \le 1.1 \text{ p.u.}$
- 2. The loading on the network should not exceed the thermal capacity of the distribution transformer and feeders.



UK Winter & Summer Household load

Network Voltage Profile with EVs Charging


20% EVs penetration level charging at home from 18:00 pm

Network Voltage Profile with EVs and Local Generation

20%, 3 kW EVs home charging and 50% 1.5 kW micro wind generator connoted to the grid

- 1. High penetration of EVs charging can increase the risk of overloading; affecting the grid security.
- 2. Central control (e.g. on-load tap changer) may not provide adequate solution.
- Renewable energy generation profiles may not match EV charging profiles and this may necessitate the use of storage systems.

Charging Options

	Home charging	Public charging	Fast charging
Power	3 kW	23 kW	Up to 50 kW
Time	8 hours	1 hour	20 mins (80%SOC)
Average C-Rate	1/8 C	1 C	3 C

Existing chargers provide limited controllability and flexibility to the user

• They are not smart!

- 1. User can't decide how much energy exactly to charge
- 2. User can't decide the charging current rate, which is required to meet customers' needs as well as optimize battery life cycle (health).
- 3. User can't enjoy the low price charging benefit (renewables)
- 4. Current charger can not respond to grid needs

Requirement for Smart Charging EV

1. Customers care

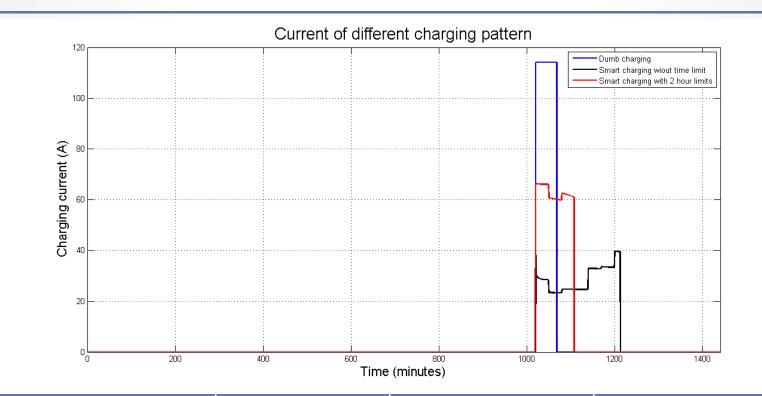
Monitor the battery status and optimize its use

2. Charging flexibility

Customers can set the charging plan according to their own requirements

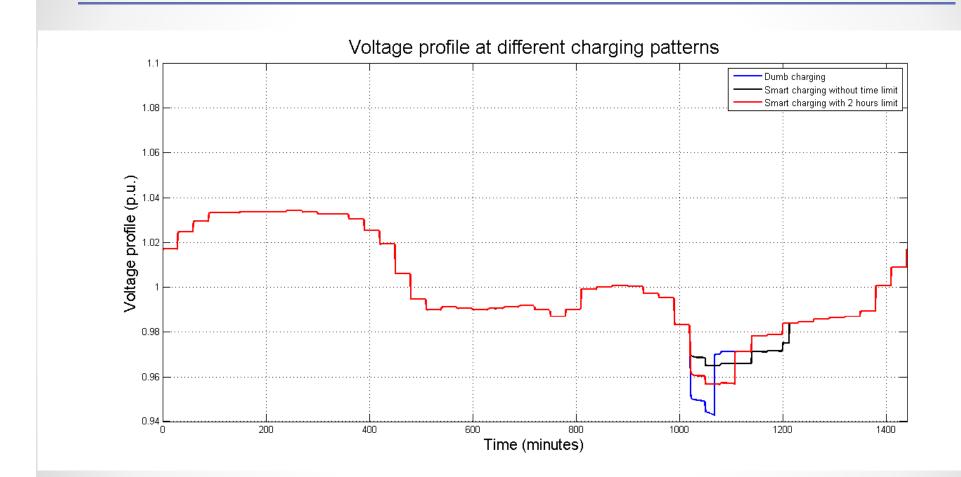
3. Network stability and security

- Voltage not to exceed the statutory limits
- Avoid overloading transformers, lines and cables
- 4. Adaption of renewable energy
 - Increase charging of EVs from renewable energy sources (when they generating!).


Condition: A half aged (90% initial usable capacity) EV battery pack was chosen for simulating the following scenarios:

- 1. "Dumb" charging, finish charging in 1 hour
- 2. Smart charging without time limit
- 3. Smart Charging with 2 hour limit

Target: Initial SOC is assumed to be 0% and on completion, battery need to be fully charged (100).


Charging Current

	Dumb charge	Smart no T limit	Smart with T limit
Time	1 hour	3.3 hours	1.6 hours
Current rate	1 C	0.3 C	0.625 C
Capacity loss per cycle	0.52%	0.005%	0.05%

4/2/2012 • 23

Voltage Profile

Summary

Compared with current charging schemes, smart charging can provide the following:

- Extent the EV battery life by appropriate control and communication with the Battery Management System (BMS)
- Offer better controllability and flexibility to charge the EV
- Improve the security and reliability of the power network
- Maximize charging from renewable energy sources

Northumbria University Power and Wind Energy Research (PaWER) group is happy to build partnerships with you!

Thanks for your attention Any question?

Footer Text