Tests and Cell Monitoring for Lithium Vehicle Batteries

Günter Müller, Karl-Ragmar Riemschneider

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

E-Mobility NSR partner meeting and transnational meeting

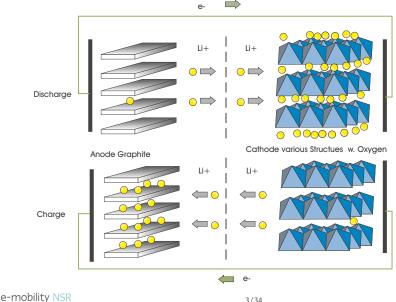
29 - 30 March 2012

Newcastle, United Kingdom

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

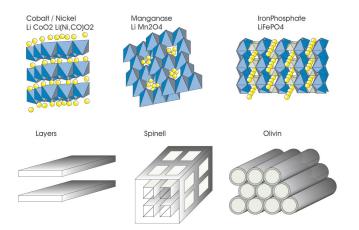
Interreg IVB North Sea project

www.e-mobility-nsr.eu This


This project is part-financed by the EU

1 Challenge: Performance + Safety + Lifetime

- **2** Objectives of Battery Monitoring
- **3** Wireless Cell Monitoring
- 4 Cell Sensor Prototypes and Systems
- **5** Sensor Function and Communication Structures
- **6** Roadmap and Conclusion



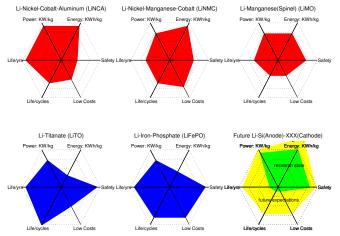
Lithium Battery Principle: Intercalation

Different Cathodes

Cathodes stores Li-lons in nano-scaled structures, anodes are recently graphite/graphene structures

EV Battery Chemistry

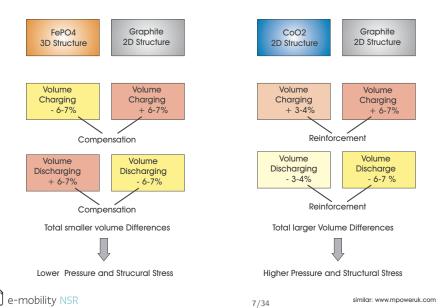
Examples of current Li-Ion battery chemistry


Developer	Chemistry	Vehicle	MY
EnerDel	Lithium manganese	Think	2009
	titanate		
A123	Doped lithium	Volt-EV	2010
	nanophosphate	Vue-PHEV	2009
		Think	2009
Compact (LG)	Manganese spinel	Volt-EV	2010
NEC		Nissan-EV	2010
Panasonic	Lithium nickel cobalt	Toyota-PHEV	2010
JCI-Saft	aluminium oxide	S400-HEV	2009
		Vue-PHEV	2009
Hitachi	Lithium cobalt oxide	GM-HEV	2010
Available Cells	Lithium manganese	Tesla-EV	2008
	oxide		
Altair Nanotechnologies	Lithium titanate spinel	Phoenix Electric	2008

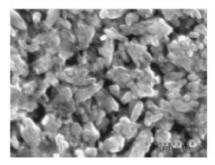
Duleep G., van Essen H., Kampman B., Grünig M. Assessment of electric vehicle and battery technology, ICF Report, Delft 2011

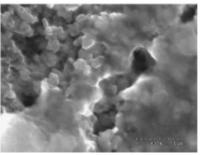
Battery chemistries in use - various combinations of anode and cathode materials

Advantages and Disadvantages of Chemistries


simplified features (thermal safety w.o. external thermal system monitoring), modified / extended orig. source: Boston Consulting Group

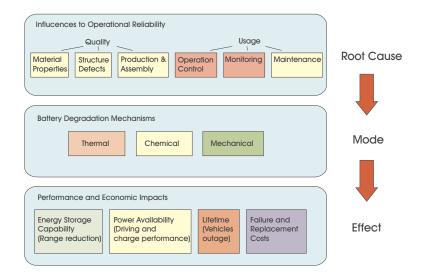
Distinct features in terms of performance, cost, safety and lifetime



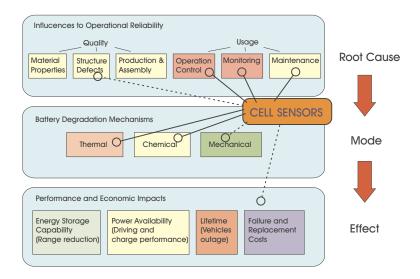


Example of different Cyclic Ageing Effects

Fresh and Aged Cathode Material


MARIE KERLAU, ROBERT KOSTECKI: Interfacial Impedance Study of LI-Ion Composite Cathodes during Aging at Elevated Temperatures. In: Journal of The Electrochemical Society, Vol. 153 (2006), Nr. 9, S. 1644 - 1648

Electron-microscopic shown Ironphosphate Surface (Production (left) and artifical aged (right))

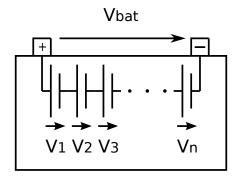


Quality and Usage Influences

Quality and Usage Influences

Battery Management in Vehicle Batteries

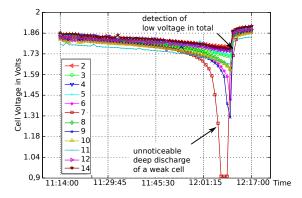
Starter Battery w. Sensor Prototypes


Traction Battery for Forklifts

Electric Car Battery

- Starter & buffer batteries in conventional vehicles (~50 \in) 0.5 kWh, 15 kg
- Objective: Early warning of end of life, in future safety related
- Traction batteries in forklifts (~2000-4000 \in) 7-40 kWh, 300-2000 kg
- Objective: Optimized battery usability and economics
- Batteries in electric vehicles (~20000 €) ~ 20 kWh, 200 kg
- Objective: Safety of use, guaranted high lifetime

Multi Cell Battery

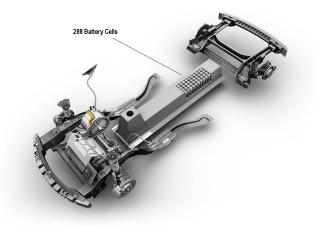


Batteries are structured up to several hundred cells

- Cells in Serial Connection: $U_{ges} = \sum_{i=1}^{n} U_i$, $I_{ges} = I_1 = ... = I_n$
- Capacity and Lifetime are given from EVERY part of this chain

Cell State Differences - a Lifetime Issue

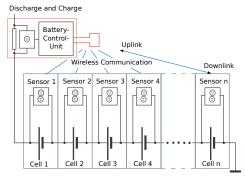
Cell voltages in a forklift battery discharge [10]


• Differences in the State of Charge (SoC)

-mobility NSR

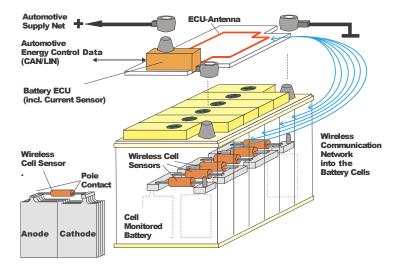
- Weaker Cells reach the discharge/charge limits earlier
- Faster ageing of weaker cells, reduced state of health (SOH)

How to Handle Hundreds of Cell Sensors ?


288 Battery Cells in a Chevrolet Volt / Opel Ampera Source: General Motors

14/34

Our Approach



- Voltage and temperature sensors located in every cell
- Wireless sensor data transmission
- Battery Control Unit: central current measurement, data fusion, state of charge and state of health estimation, battery model, communication to vehicle electronics ...

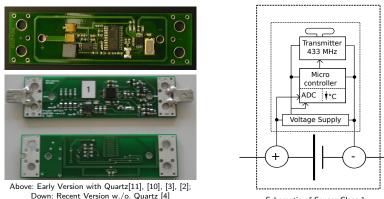
Communication: Robust and Galvanic Decoupled

Cell Sensor Implementation

Sensor Hardware:

- Ultra-Low-Power Controller measures voltage and temperature
- Uplink Transmitter-Chip ISM Band 433 MHz

Controller software:


• Measurement and communication protocol

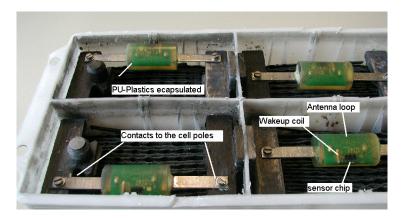
Sensors Class	Class 1	Class 2	Class 3
Communication sensors and control Unit	Uplink, no Down-link	Uplink and Downlink w. Broad-cast- Wake-up	Uplink a. Down- link w. Multi-cast or addressed com- mands
Receiver in the sensor	no receiver	passive frontend of receiver	active receiver
Measurement and communica- tion function in the sensor	autonomous	semi-autonomous	central given com- mands

Sensor Class 1

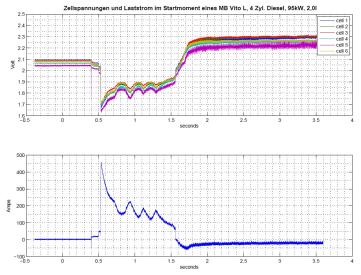
e-mobility NSR

Schematic of Sensor Class 1

- Simplified Sensor-Hardware, Costs Target: $1 \in per sensor$
- No Receiver, Transmitter w./o. quartz
- Design Objective: High Volume Application like Starter Batteries

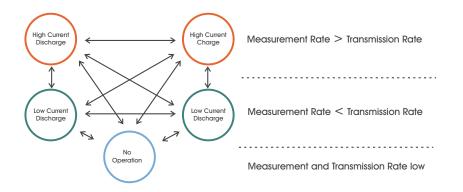

Cell Sensors - Complete Encapsulated for Integration in the Cells

Mock up for construction and material tests

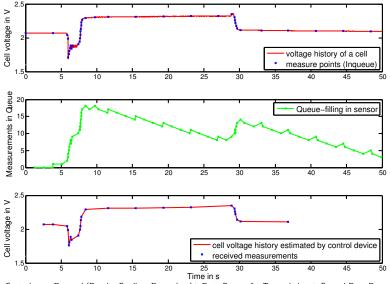

Cell Sensors mounted inside the Cells

Mock up in a conventional starter battery

Handling Fast and High Current Events

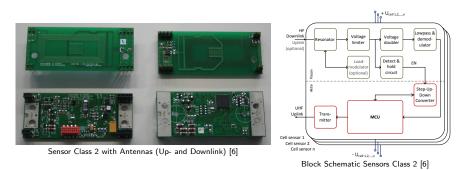

High Current Example Mercedes Benz Vito - 2.4 TDI Engine Start - 4 sec. plotted cell voltages and current

-mobility NSR


21/34

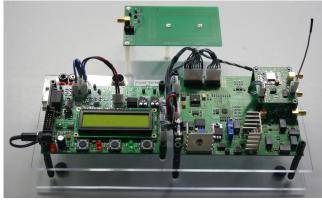
Operation Mode and Transmission Capacity

Capturing & Data Queues & Central Recovering



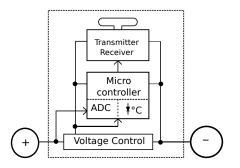
 ${\sf Value \ Capturing \ on \ Demand \ (Density \ Gradient \ Dependent)} + \ Data \ Queues \ for \ Transmission \ + \ Central \ Data \ Recovering \ Central \ Central \ Data \ Recovering \ Central \ Central \ Central \ Data \ Central \ Central \ Data \ Central \ Central \ Central \ Central \ Data \ Central \ Central$

e-mobility NSR


Sensor Class 2

- Passive frontend-circuit as receivers 13,56 MHz Downlink
- 'Quartzfree' transmitter-chip 433 MHz Uplink
- Wake-up function with the downlink signal
- Central synchronized measurements and transmissions
- ready for cell balancing

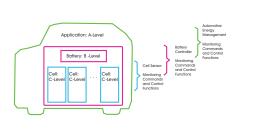
Battery Control Unit for Sensors Class 2

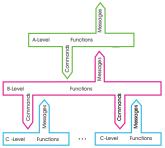


Prototyp Battery Control Unit for Class 2 Sensors [6]

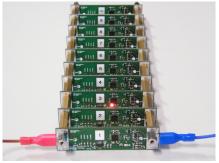
- Uplink Receiver 433 MHz Hybrid-Chip similar Class 1
- Chipset of a RFID-Reader in the downlink transmitter
- Very short time booster amplifier up to 4 watts wake-up signal
- Printed board coils sufficient as low-cost-antennas

e-mobility NSR


Planned Sensor Class 3


- Protocols like ZigBee or Bluetooth or similar
- \bullet Individual communication from / to each sensor
- Central control of cell balancing possible
- Costs are critical

Battery Management and Control Language (BMCL)


e-mobility NSR

- Monitoring and control language abstracts the control parameters, battery modells, battery module and cell structure and technology
- Our approach to preserve flexibility for various battery chemistries and system types
- Well leveled structure of distributed functions and communication of battery management system components

Calibration & Precision - a Sensor Issue

Parallel working sensors for calibration [4]

- Calibration tests done in Temperature Chambers
- Dense datafield in two dimensions voltage and temperature (-40 to 85°C)
- Statistics in software, individual calibration values loaded into Sensors
- Two-dimensional compensation calculation in sensor-controller e-mobility NSR 28/34

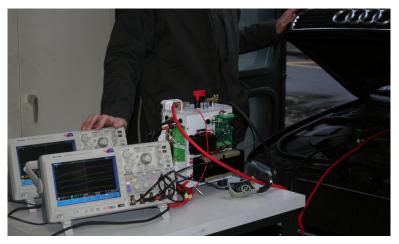
Tests in Automotive Electric Board Net

Combined tests with conventional and wireless measurements

Roadmap of our Research Group

- Sensors Class 1 in versions available and under field test
- Implemented dynamic measurement- und transmission rates promising
- Sensors Class 2 first prototypes successfully tested
- Implementation sensor Class 3 prepared
- First BMCL commands implemented

Roadmap of our Research Group


- Sensors Class 1 in versions available and under field test
- Implemented dynamic measurement- und transmission rates promising
- Sensors Class 2 first prototypes successfully tested
- Implementation sensor Class 3 prepared
- First BMCL commands implemented

Next Steps:

- Introduce wireless sensors different Li-Technologies
- Advanced battery monitoring for long life lithium-titanium forklift batteries
- Establish tests procedures in the planned Battery-Lab at HAW
- Contribue to a "Graduate School Key Technologies for Sustainable Energy Systems in Smart Grids" at Universities of Hamburg

Just under Construction -Lithium Iron Phosphate Starter Battery

Electronically monitored Lithium Iron Phosphate Starter Battery - Prototype HAW Hamburg

Conclusion

Major Challenges for E-Mobility:

- Driving Down the Cost
- Improving the Performance of EV Batteries
- Ensure Lifetime and Safety

Conclusion

Major Challenges for E-Mobility:

- Driving Down the Cost
- Improving the Performance of EV Batteries
- Ensure Lifetime and Safety
- and somewhat to contribute with suitable cell sensors

Acknowledgements

The research project 'BATSEN' is financial sponsored from the German Federal Ministry of Education and Research BMBF.

Supporting and sponsoring industrial partners:

- Volkswagen AG Wolfsburg (Automobiles)
- Bertrandt AG Wolfsburg (Automotive Engineering and Development Service)
- Still GmbH Hamburg (Forklifts)
- OMT/ECC GmbH Lübeck, Geesthacht (Battery Producer & Lithium Technology)
- Fey Electronic GmbH Seevetal (Battery Systems & Importer)
- Coilcraft Ltd. Cary US/Cumbernauld UK (Electronic Components)

Interreg IVB North Sea project

e-mobility NSR

www.e-mobility-nsr.eu

This project is part-financed by the EU

33/34

Partially granted by the European Commission / Interreg NSR IV Project and the

Forschungs- and Wissenschaftsstiftung Hamburg.

Thesis and References in Project BATSEN

- [1] Eger, Torsten; Diploma Thesis. HAW Hamburg 2008
- [2] A. Gisch, Industrial Internship Report, HAW Hamburg, 2011
- [3] Hoops A., Industrial Internship Report, HAW Hamburg 2010
- [4] Ilgin, S.; Bachelorthesis HAW Hamburg 2011
- [5] Ilgin, S., Jegenhorst, N, Kube, R., Püttjer, S., Riemschneider, K.-R., Schneider. M., Vollmer, J. Automotive Battery Monitoring by Wireless Cell Sensors. accepted IEEE International Instrumentation and Measurement Technology Conference I2MTC Graz 2012
- [6] Jegenhorst, N.; Masterthesis HAW Hamburg 2011
- [7] Krannich, T.; Diploma Thesis. HAW Hamburg 2008
- [8] Krannich T., Plaschke S., Riemschneider K.-R., Vollmer J.; Drahtlose Sensoren f
 ür Batterie-Zellen ein Diskussionsbeitrag aus Sicht einer Anwendung; 8. GI/ITG KuVS Fachgespr
 äch "'Drahtlose Sensornetze"' 2009
- [9] Kube, R.; Masterthesis, HAW Hamburg 2011
- [10] Plaschke, S.; Experimentalsystem für drahtlose Batteriesensorik; Diploma Thesis. 2008
- [11] Püttjer, S.; Diplom Thesis HAW Hamburg 2011
- [12] Riemschneider, K.-R., Schneider, M., Drahtlose Sensoren in den Zellen von Fahrzeug-Batterien., 21. International Scientific Conference Mittweida 2011

