An anatomy of techno-scientific promise

The case of Li-ion batteries

Sjoerd Bakker

Sjoerd Bakker – OTB Research Institute

1

EV's and other cars of the future

- Competing visions & technologies
- •Why do we 'believe' in some and not in others?
 - By definition: underperforming technologies
 - Belief in EV's relies on expected improvement of batteries
 - How are such expectations constructed?

2

Innovation and expectations

- In general we expect technology to improve
 - 'an endless frontier'
- Expectations of specific technological options:
 - Individually inspiring
 - Collective expectations coordinate efforts
 - Risk of "hype & disappointment"
- Expectations relate to:
 - Technology as such
 - Other stakeholders' behavior
 - Contextual factors

Example: Moore's law

- "Density of computer chips will double every two years"
- Promise became requirement for industry

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Expectations of Electric Vehicles

- Collective expectations positive
 - Mildly forcing stakeholders to move along
 - Some characteristics of hype?
- Collective ambiguity
 - Range, charging times, costs
- Much, if not all, depends on battery improvements?

Consumer studies

- Meta study on consumer preferences:
 - Reduction of battery <u>costs</u> and the development of advanced battery technologies permitting longer <u>range</u> (Dimitropoulos 2011)
- Consumer survey in the Netherlands:
 - decisive factors are price, range and availability of <u>fast charging</u> facilities (Molin 2012)
- Pilot projects with mainstream consumers
 - "EV is not there yet"
 - Different from typical 'early adopters' (Graham-Rowe 2012)

Automotive industry statements

- Elon Musk (Tesla):
 - "a weak Moore's Law" of 8% annual improvements in the price/performance of lithium-ion batteries
- Honda:
 - "vehicle electrification will accelerate only at the pace of battery innovation"
- Daimler:
 - "improvements on cost, safety and lifetime aspects have to be the main focus for the next generations of EV batteries"
- Volvo (last week):
 - Considering the lack of coordinated governmental incentives and the high battery system costs, the market share for electrified vehicles will struggle to pass the 1% mark by 2020

TUDelft

Improving battery "performance"

• Many criteria to assess batteries:

- Costs: cell/pack/system
- Capacity: power & energy
- Charging times
- No. of charge and discharge cycles
- Safety
- Resource availability and recycling
- Priorities vary per application
- Trade-offs between characteristics

Extrapolating recent progress

TUDelft

The paths forward: manufacturing

- Scale efficiency
 - Factory level
 - Supply chain optimization
- Increasing mining/production of raw materials
- More efficient packaging of cells
- Standardization
 - Standardized battery packs?
 - Quality and safety standards to enable competition
- A123: Scale is not enough to bring down costs sufficiently
- BCG: 65% cost reduction towards 2020
- Roland Berger: 230→320 Wh/kg

Path forward: beyond li-ion

Current options

- Li-air!
 - Cycle issues
 - Potentially 5-10x energy density
- Zn-air
- "Re-inventing Lead Acid"

However

- "Not in 5yrs"
- "not commercial before 2025" (Volkswagen)

Defining an end-goal

Rare statements about end-goal

- "Sakichi" ultimate battery for Toyota > gasoline
- Nissan-NEC JV: "300 km range needed for mass market"
- "Car manufacturers ask for 5000 cycles"
- "1-2% market share for EV in automotive market is enough incentive for battery industry to invest"

Conclusions

- Rely on existing technologies coming 5-10 yrs at least
 - Incremental improvements in manufacturing and chemistry
- New battery types in lab/prototype
 - Step change improvements (price x performance) not promised
- EV in "valley of death" between R&D and true commercialization
 - Challenge: maintain momentum without <u>actual</u> big improvements
 - <u>Promises</u> of new batteries do help
- For now: focus on markets that make sense
- BMW:
 - "there are other promising technologies coming up and we do not know what the future will bring"

