Energiespeicher für die Elektromobilität -Entwicklungstrends

Julian Schwenzel

Fraunhofer – Institut für Fertigungstechnik und Angewandte Materialforschung

Wiener Straße 12 28359 Bremen Marie- Curie Str. 1-3 26129 Oldenburg

Neue Mobilität

ökologische und ökonomische Notwendigkeit

- Reduzierung von Treibhausgasen
- Kostenreduzierung ("Peak Oil")
- Einsatz erneuerbare Energie

Anforderungen an zukünftige Batterien für automobile Anwendung

- Energie, Leistung, Lebensdauer, Temperatur
- Sicherheit
- Kosten
- Verfügbarkeit
- Zuverlässigkeit

Materialforschung & Prozessentwicklung sind Schlüssel zu besseren Energiespeichern für die Elektromobilität !

Batterietechnologien für E- Fahrzeuge

Verfügbare Batterietechnologie

Lithium Ionen Markt

Akzeptanz für E- Fahrzeuge

Kosten

Senkung der Batteriekosten

Euro / kWh

Erhöhung der Energiedichten

Erhöhung der spez. Energie und verbesserte Zellfertigung ist die größte Drehschraube zur Kostenreduzierung.

Kostenverteilung Lithium Ionen Batterie Pack

basierend auf 500 €/kWh (Hoch-Energie Pack)

Material & Verarbeitung :Reinheit, kWh/kg, ProzesstechnologieZellfertigung:Produktionseffizienz (m²/sec), ReproduzierbarkeitBatteriebau:Stückzahl, Fertigungstechnologie

Kosten können auf 250 € / kWh (bis 2020) reduziert werden!

Quelle : Roland Berger Strategy Consultants

Gewichtsverteilung einer Batterie- Zelle

Energieinhalt:

- "innere Energie" bestimmt durch das aktive Elektrodenmaterial
- "äußere Energie" bestimmt durch das Elektroden- / Batteriedesign

Werte nach: A. Jossen, Basiskurs Batterien, Design & Elektronik Entwicklerforum, München, 2010

Lithium Ionen Technologie

Für die Realisierung der Gen. I stehen:

- Kosten
- Sicherheit
- Lebensdauer
- Leistung

im Blickpunkt der Entwicklung.

"Etablierung verlässlicher Technologie"

Kombination von zwei Insertionselektroden:

Quelle: Bruce, Solid State Ionics 179 (2008) 752–760

Elektrodenmaterialien für Lithium Ionen Batterien

Einige Materialien für die positive LIB-Elektrode

Materialkombinationen / Zelldesign

Firma	Kathode	Anode	Elektrolyt	Gehäuse	Struktur	Form
Panasonic	NMC	Blend	flüssig	Metall	gewickelt	prismatisch
Hitachi	NMC / LMO	Hard Carbon	Flüssig	Metall	gewickelt	zylindrisch
Sanyo	NMC / LMO	Blend	flüssig	Metall	gewickelt	zylindrisch
Toyota	NCA	Graphit	Flüssig	Metall	gewickelt	prismatisch
A123	LFP	Graphit	flüssig	Metall	gewickelt	zylindrisch
LG Chem	LMO	Hard Carbon	Gel	Pouch	gestapelt	Prismatisch
SK Corp.	LMO	Graphit	flüssig	Pouch	gewickelt	zylindrisch
Altair Nano	NMC / LCO	LTO	flüssig	Pouch	gestapelt	prismatisch

Entwicklungen und Potentiale LiB's

Kathodenmaterialien mit höheren Kapazitäten z.B.: - höheren Lithiumumsatz

- .. Noheren Eitinamann 7./klonstabilität
 - Zyklenstabilität,
 - Preis, Sicherheit

Anodenmaterialien mit höheren Kapazitäten

- z.B.: Legierungen (IP)
 - Zyklenstabilität,
 - Sicherheit,

Erhöhung der Zellspannung

- z.B.: Hochvoltkathodenmaterialien
 - Sicherheit,
 - Stabilität,
 - Elektrolyt nicht brennbar

Inaktiven Komponenten

- z.B.: dickere Elektroden ,
 - leichtere Stromableiter,
 Separatoren, Verpackung

🗾 Fraunhofer

IFAM

Neue Speichertechnologien für EV's zielen auf hohe Energiedichten (> 300 Wh/kg)

Allgemeine Entwicklungsziele für Li/Luft-Akkus

Positive Elektrode: Gasdiffusionselektoden

Poröses Kohlenstoff Material:

- Graduiertes Porengefüge/Porosität
- Verbesserter Sauerstofftransport (und Li+)
- Platzbedarf für Entladeprodukte (LiO_x)

[*] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett. 2010, 1, 2193–2203

Positive Elektrode: Gasdiffusionselektoden

Katalysatoren

- Verringerung der Überpotentiale
- Vermeidung kinetischer Hemmungen
- Verbesserung der Zelleffizienz

Einfluss des Elektrolyten in Lithium Luft Batterien

Anforderungen an den Elektrolyten: Hohe chemische Stabilität gegenüber Superoxide und Lithium.

CV Messungen in O₂ Atmosphäre:

Acetonitrile stabilere Elektrolyte !

In-situ Messtechnik

In-situ Massenspektrometrie, Infrarotspektroskopie, Ramanspektroskopie

Ziele:

Analyse der chemischen und elektrochemischen Systemstabilität sowie mechanistische Aufklärung des Entlade- / Ladeprozesses

Zusammenfassung

Aktuelle Batteriesysteme:

- LiB Systeme besitzen weiterhin hohes Entwicklungspotential hinsichtlich Kosten, Sicherheit, Leistung und Energiedichte (Gen I – Gen II)
- Verbesserte und nachhaltige Marktattraktivität für EV
- allg. Akzeptanz
- Neue Batterietechnologie (Gen IV) Metall Luft System:
- Wichtig f
 ür große Reichweiten
- aber noch viele wissenschaftliche und technische Herausforderungen!

FhG Forschungslandschaft "Allianz Batterien"

- Chemical Technology ICT
- Ernst-Mach-Institute EMI
- Manufacturing Technology and Applied Materials Research IFAM
- Integrated Circuits IIS
- Ceramic Technologies and Systems IKTS
- Silicate Research ISC
- Systems and Innovation Research ISI
- Integrated Systems and Device Technology IISB
- Manufacturing Engineering and Automation IPA
- Silica Technology ISIT
- Solar Energy Systems ISE
- Systems and Innovation Research ISI
- Techno- und Industrial Mathematics ITWM
- Transportation and Infrastructure Systems IVI
- Mechanics of Materials IWM
- Material and Beam Technology ILT
- Structural Durability and System Reliability LBF
- Algorithms and Scientific Computing SCAI

Fraunhofer-Systemforschung Elektromobilität Fahrzeugkonzepte / Demonstrator "Frecc0"

Radnabenmotor

Sportwagen-Chassis zur Integration von Batteriesystem u. Radnabenmotor

Forschungsfeld der IFAM Projektgruppe Elektrische Energiespeicher

Elektrische Energiespeicher :

- prototyp. Entwicklung wiederaufladbarer Metall/Luft-Batterien (auf Zellen- und Modul-Ebene)
- Prozess- und Fertigungstechnik der Komponenten
- Systemintegration neuer Speichertechniken

Parkallee 301 D-28213 Bremen

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt: julian.schwenzel @ifam.fraunhofer.de

Marie-Curie-Straße 1 D-26129 Oldenburg

